Shayn M. Peirce-Cottler

Education

  • BS, Johns Hopkins University
  • PhD, University of Virginia

Primary Appointment

  • Associate Professor, Biomedical Engineering

Contact

Research Interest(s)

Tissue Engineering and Regeneration, Computational Systems Biology, Vascular Growth and Remodeling, Stem Cell Therapies

Research Description

The Important Role of the Microcirculation:

Every organ in the body is dependent on blood flow to provide the necessary oxygen and nutrients in order to stay alive. The circulatory system is responsible for delivering blood to and from all of the tissues, and the microcirculation is the set of the smallest blood vessels in the body. (Microvessels are less than 100 micrometers in diameter, and they can only be visualized using a microscope!) Our research is interested in understanding how microvessels grow and remodel during normal physiological development and in the setting of different important diseases where their involvement in disease progression is absolutely central, such as heart disease, peripheral vascular disease, diabetic retinopathy, cancer, and chronic wound formation.

The Microcirculation in Tissue Engineering and Regenerative Medicine:

We are are also interested in applying our knowledge of the microcirculation in order to grow new tissues (tissue engineering) and regenerate damaged tissues in the body (tissue regeneration). In fact, without a blood supply (ie. without microvessels) tissues beyond the small size of 1 cubic millimeter cannot survive in the body. Therefore, our research aims to address a critical bottleneck for all of tissue engineering and regenerative medicine aspirations: growing new functional and sustainable microvessels that can deliver blood to the tissues that we are trying to heal and/or replace.

Specific Research Goals:

The overarching goals of our research are to: 1) understand how tissues, or collections of biological cells and their extracellular matrix environment, grow and adapt in response to physiological and pathological environmental (i.e. biochemical and mechanical) stimuli, and 2) use this information to develop therapeutic strategies for invoking/promoting tissue regeneration and repair. We are predominantly interested in pursuing these goals within the context of the adult microvascular system, which is essential in many human diseases, including heart disease, cancer, and chronic wounds. All of our projects combine multi-cell computational modeling with experimental analyses.

Selected Publications

  • Cronk S, Kelly-Goss M, Ray H, Mendel T, Hoehn K, Bruce A, Dey B, Guendel A, Tavakol D, Herman I, Peirce S, Yates P. Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy. Stem cells translational medicine. 2015;4(5): 459-67. PMID: 25769654 | PMCID: PMC4414213
  • Heuslein J, Li X, Murrell K, Annex B, Peirce S, Price R. Computational Network Model Prediction of Hemodynamic Alterations Due to Arteriolar Rarefaction and Estimation of Skeletal Muscle Perfusion in Peripheral Arterial Disease. Microcirculation (New York, N.Y. : 1994). 2015;22(5): 360-9. PMID: 25866235 | PMCID: PMC4506703
  • Martin K, Blemker S, Peirce S. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. Journal of applied physiology (Bethesda, Md. : 1985). 2015;118(10): 1299-309. PMID: 25722379 | PMCID: PMC4436981
  • Murfee W, Sweat R, Tsubota K, Mac Gabhann F, Khismatullin D, Peirce S. Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales. Interface focus. 2015;5(2): 20140077. PMID: 25844149 | PMCID: PMC4342945
  • Seaman S, Tannan S, Cao Y, Peirce S, Lin K. Differential Effects of Processing Time and Duration of Collagenase Digestion on Human and Murine Fat Grafts. Plastic and reconstructive surgery. 2015;136(2): 189e-99e. PMID: 26218393
  • Virgilio K, Martin K, Peirce S, Blemker S. Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface focus. 2015;5(2): 20140080. PMID: 25844152 | PMCID: PMC4342948
  • Walpole J, Chappell J, Cluceru J, Mac Gabhann F, Bautch V, Peirce S. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks. Integrative biology : quantitative biosciences from nano to macro. 2015. PMID: 26158406
  • Agrawal H, Shang H, Sattah A, Yang N, Peirce S, Katz A. Human adipose-derived stromal/stem cells demonstrate short-lived persistence after implantation in both an immunocompetent and an immunocompromised murine model. Stem cell research & therapy. 2014;5(6): 142. PMID: 25523792 | PMCID: PMC4445497
  • Bruce A, Kelly-Goss M, Heuslein J, Meisner J, Price R, Peirce S. Monocytes are recruited from venules during arteriogenesis in the murine spinotrapezius ligation model. Arteriosclerosis, thrombosis, and vascular biology. 2014;34(9): 2012-22. PMID: 24969773 | PMCID: PMC4373588
  • Okutsu M, Call J, Lira V, Zhang M, Donet J, French B, Martin K, Peirce-Cottler S, Rembold C, Annex B, Yan Z. Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure. Circulation. Heart failure. 2014;7(3): 519-30. PMID: 24523418 | PMCID: PMC4080303
  • Awojoodu A, Ogle M, Sefcik L, Bowers D, Martin K, Brayman K, Lynch K, Peirce-Cottler S, Botchwey E. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(34): 13785-90. PMID: 23918395 | PMCID: PMC3752259
  • Guendel A, Martin K, Cutts J, Foley P, Bailey A, Mac Gabhann F, Cardinal T, Peirce S. Murine spinotrapezius model to assess the impact of arteriolar ligation on microvascular function and remodeling. Journal of visualized experiments : JoVE. 2013; e50218. PMID: 23486360 | PMCID: PMC3622090
  • Kelly-Goss M, Sweat R, Stapor P, Peirce S, Murfee W. Targeting pericytes for angiogenic therapies. Microcirculation (New York, N.Y. : 1994). 2013;21(4): 345-57. PMID: 24267154 | PMCID: PMC4079092
  • Mendel T, Clabough E, Kao D, Demidova-Rice T, Durham J, Zotter B, Seaman S, Cronk S, Rakoczy E, Katz A, Herman I, Peirce S, Yates P. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PloS one. 2013;8(5): e65691. PMID: 23741506 | PMCID: PMC3669216
  • Walpole J, Papin J, Peirce S. Multiscale computational models of complex biological systems. Annual review of biomedical engineering. 2013;15 137-54. PMID: 23642247 | PMCID: PMC3970111
  • Peirce S, Mac Gabhann F, Bautch V. Integration of experimental and computational approaches to sprouting angiogenesis. Current opinion in hematology. 2012;19(3): 184-91. PMID: 22406822 | PMCID: PMC4132663
  • Taylor A, Mendel T, Mason K, Degen K, Yates P, Peirce S. Attenuation of ephrinB2 reverse signaling decreases vascularized area and preretinal vascular tuft formation in the murine model of oxygen-induced retinopathy. Investigative ophthalmology & visual science. 2012;53(9): 5462-70. PMID: 22789927 | PMCID: PMC3948501
  • Yang M, Stapor P, Peirce S, Betancourt A, Murfee W. Rat mesentery exteriorization: a model for investigating the cellular dynamics involved in angiogenesis. Journal of visualized experiments : JoVE. 2012; e3954. PMID: 22643964 | PMCID: PMC3466932
  • Amos P, Mulvey C, Seaman S, Walpole J, Degen K, Shang H, Katz A, Peirce S. Hypoxic culture and in vivo inflammatory environments affect the assumption of pericyte characteristics by human adipose and bone marrow progenitor cells. American journal of physiology. Cell physiology. 2011;301(6): C1378-88. PMID: 21865587 | PMCID: PMC3233793
  • Billaud M, Ross J, Greyson M, Bruce A, Seaman S, Heberlein K, Han J, Best A, Peirce S, Isakson B. A new method for in vivo visualization of vessel remodeling using a near-infrared dye. Microcirculation (New York, N.Y. : 1994). 2011;18(3): 163-71. PMID: 21418375 | PMCID: PMC3081403
  • Bruce A, Peirce S. Exogenous thrombin delivery promotes collateral capillary arterialization and tissue reperfusion in the murine spinotrapezius muscle ischemia model. Microcirculation (New York, N.Y. : 1994). 2011;19(2): 143-54. PMID: 21954923 | PMCID: PMC3262124
  • Hashambhoy Y, Chappell J, Peirce S, Bautch V, Mac Gabhann F. Computational modeling of interacting VEGF and soluble VEGF receptor concentration gradients. Frontiers in physiology. 2011;2 62. PMID: 22007175 | PMCID: PMC3185289
  • Hayenga H, Thorne B, Peirce S, Humphrey J. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Annals of biomedical engineering. 2011;39(11): 2669-82. PMID: 21809144 | PMCID: PMC3207323
  • Morris E, Kesser B, Peirce-Cottler S, Keeley M. Development and validation of a novel ear simulator to teach pneumatic otoscopy. Simulation in healthcare : journal of the Society for Simulation in Healthcare. 2011;7(1): 22-6. PMID: 21937958
  • Seaman M, Peirce S, Kelly K. Rapid analysis of vessel elements (RAVE): a tool for studying physiologic, pathologic and tumor angiogenesis. PloS one. 2011;6(6): e20807. PMID: 21694777 | PMCID: PMC3111429
  • Thorne B, Hayenga H, Humphrey J, Peirce S. Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent based model. Frontiers in physiology. 2011;2 20. PMID: 21720536 | PMCID: PMC3118494
  • Benedict K, Mac Gabhann F, Amanfu R, Chavali A, Gianchandani E, Glaw L, Oberhardt M, Thorne B, Yang J, Papin J, Peirce S, Saucerman J, Skalak T. Systems analysis of small signaling modules relevant to eight human diseases. Annals of biomedical engineering. 2010;39(2): 621-35. PMID: 21132372 | PMCID: PMC3033523
  • Glaw J, Skalak T, Peirce S. Inhibition of canonical Wnt signaling increases microvascular hemorrhaging and venular remodeling in adult rats. Microcirculation (New York, N.Y. : 1994). 2010;17(5): 348-57. PMID: 20618692 | PMCID: PMC2904644
  • Mac Gabhann F, Peirce S. Collateral capillary arterialization following arteriolar ligation in murine skeletal muscle. Microcirculation (New York, N.Y. : 1994). 2010;17(5): 333-47. PMID: 20618691 | PMCID: PMC2907254
  • Sefcik L, Aronin C, Awojoodu A, Shin S, Mac Gabhann F, MacDonald T, Wamhoff B, Lynch K, Peirce S, Botchwey E. Selective activation of sphingosine 1-phosphate receptors 1 and 3 promotes local microvascular network growth. Tissue engineering. Part A. 2010;17(5): 617-29. PMID: 20874260 | PMCID: PMC3043977
  • Taylor A, Seltz L, Yates P, Peirce S. Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina. Microvascular research. 2010;79(2): 93-101. PMID: 20080108 | PMCID: PMC2828864
  • Amos P, Kapur S, Stapor P, Shang H, Bekiranov S, Khurgel M, Rodeheaver G, Peirce S, Katz A. Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue engineering. Part A. 2009;16(5): 1595-606. PMID: 20038211 | PMCID: PMC2952117
  • Petrie Aronin C, Sefcik L, Tholpady S, Tholpady A, Sadik K, Macdonald T, Peirce S, Wamhoff B, Lynch K, Ogle R, Botchwey E. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue engineering. Part A. 2009;16(6): 1801-9. PMID: 20038198 | PMCID: PMC2949231
  • Volsky P, Hughley B, Peirce S, Kesser B. Construct validity of a simulator for myringotomy with ventilation tube insertion. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2009;141(5): 603-608.e1. PMID: 19861198