B. Jill Venton

Education

  • BS, University of Delaware
  • PhD, University of North Carolina
  • Postdoc, University of Michigan

Contact

Research Interest(s)

Analytical Neurochemistry; Electrochemical Detection of Adenosine; Mechanisms of Drugs of Abuse using Capillary Electrophoresis

Research Description

Analytical Neurochemistry
I am interested in the development and characterization of analytical techniques to measure neurochemical changes. Measurements in the brain are challenging because zeptomole quantities of neuroactive molecules must be detected in a chemically-complex sample while disturbing the tissue as little as possible. In addition, fast time resolution measurements are needed to track the fast dynamics of neurotransmitter release and uptake. The development of new analytical tools will enable a better understanding of the central nervous system which will, in turn, facilitate the development of new treatments for neurological disorders.

Electrochemical Detection of Adenosine
The goal of this project is to develop an electrochemical detection method for real-time monitoring of adenosine concentrations. Adenosine is a neuromodulator in the brain that has a variety of actions including regulation of cerebral blood flow, modulation of neurotransmission, and protection against neuronal injury during stroke. There is currently no reliable method for electrochemical detection of adenosine in vivo. Direct detection of adenosine using cyclic voltammetry at carbon-fiber microelectrodes will be examined as well as using electrodes modified with electron mediators. The sensor will be used to characterize extracellular adenosine release in the rat brain following electrical stimulation of neuronal activity and during ischemia, a model of stroke. Simultaneous monitoring of adenosine, oxygen and dopamine concentrations will allow studies of how adenosine modulates neurotransmission and cerebral blood flow. Finally, a finite difference model of adenosine diffusion will be constructed to examine the factors that control adenosine concentrations.

Mechanisms of Drugs of Abuse using Capillary Electrophoresis
My second proposal is directed at the development of separation methods to study new molecules in microdialysate samples with capillary electrophoresis with laser-induced fluorescence detection. Currently, only 6 amino acid neurotransmitters are routinely monitored with high temporal resolution. First, a separation will be optimized to detect amphetamine, a drug of abuse, and amino acids simultaneously. Microdialysis will be used to examine the effects of dose and the route of amphetamine administration on the pharmacokinetics (the dynamics of drug concentrations) and pharmacodynamics (the effects on neurotransmitter concentrations). Different fluorescent tags will be examined to study secondary amines such as Ecstasy.

Selected Publications

  • Glanowska K, Venton B, Moenter S. Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2012;32(42): 14664-9. PMID: 23077052 | PMCID: PMC3492948
  • Pajski M, Venton B. The mechanism of electrically stimulated adenosine release varies by brain region. Purinergic signalling. 2012. PMID: 23192278
  • Ross A, Venton B. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine. The Analyst. 2012;137(13): 3045-51. PMID: 22606688 | PMCID: PMC3392196
  • Vickrey T, Venton B. Drosophila Dopamine2-like receptors function as autoreceptors. ACS chemical neuroscience. 2012;2(12): 723-729. PMID: 22308204 | PMCID: PMC3269839
  • Xiao N, Venton B. Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests. Analytical chemistry. 2012;84(18): 7816-22. PMID: 22823497 | PMCID: PMC3445787
  • Fang H, Vickrey T, Venton B. Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection. Analytical chemistry. 2011;83(6): 2258-64. PMID: 21322586 | PMCID: PMC3058613
  • Jacobs C, Vickrey T, Venton B. Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes. The Analyst. 2011;136(17): 3557-65. PMID: 21373669
  • Pajski M, Venton B. Adenosine Release Evoked by Short Electrical Stimulations in Striatal Brain Slices is Primarily Activity Dependent. ACS chemical neuroscience. 2011;1(12): 775-787. PMID: 21218131 | PMCID: PMC3016054
  • Borue X, Condron B, Venton B. Both synthesis and reuptake are critical for replenishing the releasable serotonin pool in Drosophila. Journal of neurochemistry. 2010;113(1): 188-99. PMID: 20070864 | PMCID: PMC2860618
  • Cechova S, Elsobky A, Venton B. A1 receptors self-regulate adenosine release in the striatum: evidence of autoreceptor characteristics. Neuroscience. 2010;171(4): 1006-15. PMID: 20933584 | PMCID: PMC2991493
  • Jacobs C, Peairs M, Venton B. Review: Carbon nanotube based electrochemical sensors for biomolecules. Analytica chimica acta. 2010;662(2): 105-27. PMID: 20171310
  • Kile B, Guillot T, Venton B, Wetsel W, Augustine G, Wightman R. Synapsins differentially control dopamine and serotonin release. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2010;30(29): 9762-70. PMID: 20660258 | PMCID: PMC2923550
  • Xu Y, Venton B. Rapid determination of adenosine deaminase kinetics using fast-scan cyclic voltammetry. Physical chemistry chemical physics : PCCP. 2010;12(34): 10027-32. PMID: 20577678
  • Borue X, Cooper S, Hirsh J, Condron B, Venton B. Quantitative evaluation of serotonin release and clearance in Drosophila. Journal of neuroscience methods. 2009;179(2): 300-8. PMID: 19428541 | PMCID: PMC2691387
  • Cooper S, Venton B. Fast-scan cyclic voltammetry for the detection of tyramine and octopamine. Analytical and bioanalytical chemistry. 2009;394(1): 329-36. PMID: 19189084
  • Vickrey T, Condron B, Venton B. Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Analytical chemistry. 2009;81(22): 9306-13. PMID: 19842636 | PMCID: PMC2876717
  • Cechova S, Venton B. Transient adenosine efflux in the rat caudate-putamen. Journal of neurochemistry. 2008;105(4): 1253-63. PMID: 18194431
  • Huffman M, Venton B. Carbon-fiber microelectrodes for in vivo applications. The Analyst. 2008;134(1): 18-24. PMID: 19082168 | PMCID: PMC2684111
  • Strand A, Venton B. Flame etching enhances the sensitivity of carbon-fiber microelectrodes. Analytical chemistry. 2008;80(10): 3708-15. PMID: 18416534
  • Swamy B, Venton B. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. The Analyst. 2007;132(9): 876-84. PMID: 17710262
  • Swamy B, Venton B. Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. Analytical chemistry. 2007;79(2): 744-50. PMID: 17222045
  • Venton B, Robinson T, Kennedy R, Maren S. Dynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fear. The European journal of neuroscience. 2006;23(12): 3391-8. PMID: 16820029
  • Venton B, Seipel A, Phillips P, Wetsel W, Gitler D, Greengard P, Augustine G, Wightman R. Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2006;26(12): 3206-9. PMID: 16554471
  • Venton B, Wightman R. Pharmacologically induced, subsecond dopamine transients in the caudate-putamen of the anesthetized rat. Synapse (New York, N.Y.). 2006;61(1): 37-9. PMID: 17068772
  • Watson C, Venton B, Kennedy R. In vivo measurements of neurotransmitters by microdialysis sampling. Analytical chemistry. 2006;78(5): 1391-9. PMID: 16570388
  • Venton B, Robinson T, Kennedy R. Transient changes in nucleus accumbens amino acid concentrations correlate with individual responsivity to the predator fox odor 2,5-dihydro-2,4,5-trimethylthiazoline. Journal of neurochemistry. 2005;96(1): 236-46. PMID: 16300631
  • Garris P, Budygin E, Phillips P, Venton B, Robinson D, Bergstrom B, Rebec G, Wightman R. A role for presynaptic mechanisms in the actions of nomifensine and haloperidol. Neuroscience. 2003;118(3): 819-29. PMID: 12710989
  • Robinson D, Venton B, Heien M, Wightman R. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clinical chemistry. 2003;49(10): 1763-73. PMID: 14500617
  • Venton B, Michael D, Wightman R. Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate-putamen. Journal of neurochemistry. 2003;84(2): 373-81. PMID: 12558999
  • Venton B, Zhang H, Garris P, Phillips P, Sulzer D, Wightman R. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. Journal of neurochemistry. 2003;87(5): 1284-95. PMID: 14622108
  • Troyer K, Heien M, Venton B, Wightman R. Neurochemistry and electroanalytical probes. Current opinion in chemical biology. 2002;6(5): 696-703. PMID: 12413556
  • Venton B, Troyer K, Wightman R. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration. Analytical chemistry. 2002;74(3): 539-46. PMID: 11838672